電腦輔助工程分析 ANSYS WORKBENCH 2

林峻立 教授 國立陽明大學 生物醫學工程系

體積建模工具

- Create
 - Pattern
 - Body Operation
 - Mirror, Move, Scale, Sew, Rotat
 - Boolean
 - Unite, Subtract, Intersect..
 - Slice
 - By plane, By face, ...
- Tool
 - Symmetry
 - Merge

體積運算功能亦比ANSYS佳

Slice

目标体

物件抑制(Suppress)

- 抑制物件不會於繪圖視窗中
- 抑制物件不會送到其他Workbench模組中用於網格分割及分析
- 抑制物件在結構樹狀視窗中前面有一个 "X"

- 模型為組合件時,若要組合件 間能共用面,達到力量直接傳 遞時,必須將此部份組件形成 一個群組>From New part。
- 若要組合件間能有各自的面, 達到contact效果時,則不須 進行此動作,模型匯入Design Simulation時軟體會自動判斷 出非連續面之部份。

接觸(contact)非線性分析

 於Design Simulation會偵測到非Bonded之界面, 並於Connection中顯示所有之contact區域

接觸(contact)非線性分析

- 接觸種類設定
 - Bonded
 - 預設項目,沒有相對滑動和分離,會忽略初始穿刺 (penetration),模擬為相互連接
 - No Separation
 - 此設定類似Bonded,僅適用於3D(面)或2D(邊)之接觸, 沒有相對分離,僅可延接觸面有些微無摩擦滑動
 - Frictionless
 - 此為單邊接觸,假設摩擦係數為0,允許相對滑動,出現分離時 法向量壓力為0,法向會分離
 - Rough
 - 此設定類似frictionless,有摩擦係數,無相對滑動,法向會分離
 - Frictional
 - 有摩擦係數,有相對滑動,法向會分離

接觸(contact)非線性分析

- Interface treatment
 - Offset: 给初始調整給定一个0或非0的值
 - Adjusted to Touch: ANSYS把間隔調整到恰好接觸的位置

				(
	Contact	16 Faces	^		
	Target	16 Faces			
	Contact Bodies	Solid			
	Target Bodies	Solid			
Ξ	Definition				
	Туре	Frictional			
	Friction Coefficient	0.2			Contact pair <i>before</i> any Interface Treatment . Gap exists.
	Scope Mode	Automatic			
	Behavior	Symmetric			
	Suppressed No				
Ξ	Advanced				
	Formulation	Pure Penalty			
	Interface Treatment	Adjust to Touch	-		
	Normal Stiffness	Program Controlled			Contact pair before any Interface Treatment. Penetration exists.

Exercise 11 (Contact 1)

2D模型如圖所示,其為剛性接觸的兩物體且下端整面為固定並於上端邊線受一5MPa之壓力,請針對該模型進行接觸剛性分析。

Exercise 12 CAE- 9 (Contact 2)

圓形環分別與內 環及外環相接處, 使進行裝配過程 中圓形環受力變 形以達密封效果, 其模型如下圖所 示 · 故請建立一 二維軸對稱模型 將內環固定並施 加力於外環,其 中內環及外環材 料 為 剛 , 圓 形 環 材料為橡膠 · \) 以兩個負荷步驟 來分析三個零件 之裝配過程。

Exercise 13 (contact 3)

- 請構出硬質骨與鬆質骨圓柱模型,尺寸如圖所示,並將外部CAD軟體建構出之植體檔 (screw.iges)匯入,各材料特性硬質骨(楊氏係數=17000 MPa;蒲松比=0.3)、鬆質骨(楊氏係數=200 MPa;蒲松比=0.2)及植體(鈦合金楊氏係數=110000 MPa;蒲松比=0.33),並施加側向力200N負載於植體頂部(已於植體頂部建構一凹點特徵)上,並設定硬質骨/鬆質骨外側自由度為0(如下圖)。
 - (1) 請將模型進行兩種網格分割(mesh)(包含粗糙網格(網格尺寸 植 體 =0.5mm; 硬 質 骨 =0.8mm、 鬆 質 骨 =1.0mm)及精緻網格(網格尺寸植體=0.3mm; 硬質骨 =0.5mm、鬆質骨=0.5mm))
 - (2)請完成植體與硬質骨/鬆質骨界面未結合(unbonded) 狀態之設定(模擬植體剛植入骨頭),(3)請完成植體與硬 質骨/鬆質骨界面結合(bonded)狀態之設定(模擬植體與 骨頭已骨整合),並觀察其狀態下之硬質骨最大主應變 (Maximum Principal strain)及植體最大等效應力(von-Mises stress)情形。

Unit : mm

非線性材料模擬分析

- 殘留應力(residual stress)
 - 非線性材料設定:
 - Toolbox>Plasticity>Bilinear Isotropic Hardening

Jutine	of Schematic B2, C2: Engineering Data							
	A	в	С		D			
1	Contents of Engineering Data	9	s	[Description			
2	Material							
3	S 11							
4	4 📎 12							
5	📎 Structural Steel		8	Fatigue Data at from 1998 ASME 2, Table 5-110.1	zero mean str BPV Code, Se L	ess cor ection 8	mes B, Di	iv
6	- 12 22							
0	2 🛛 22							
*	? ₩ 22 Click here to add a new material							
*	Click here to add a new material					Ţ	- p	
*	Click here to add a new material			B	с	•	- д	
* * Properti	Click here to add a new material es of Outline Row 3: 11 A Property			B Value	C Unit		ф Д	
roperti	Click here to add a new material es of Outline Row 3: 11 Property Source Elasticity			B Value	C Unit	•	- म D	
roperti 1 2 8	Click here to add a new material es of Outline Row 3: 11 Property Source Elasticity Source Elasticity Disotropic Elasticity Disotropic Hardening			B Value	C		P D	
Properti	Click here to add a new material es of Outline Row 3: 11 Property Solution Elasticity Bilinear Isotropic Hardening Yield Strength			B Value 80	C Unit MPa	-	- 	

非線性材料模擬分析

- 求解方法:
 - Workbench無法在無邊界及負載條件下進行解題

ANSYS Workbench - Error	×
You need at least one structural load to proceed with the solution.	
確定	

Ŀ

•利用不同Step-時間點(Time)來給定負載

Fabular Data

ĩ						
l		Steps	Time [s]	🔽 X [MPa]	Y [MPa]	Z [MPa]
l	1	1	0.	0.	0.	0.
l	2	1	1.	0.	0.1	0.
l	3	2	2.	0.	0.	0.
I	÷					

-	Step Controls			
	Number Of Steps	2.		
	Current Step Number	1.		
	Step End Time	1. s		
	Auto Time Stepping	Program Controlled		
-	Solver Controls			
	- L			

1			
Ð	Definition		
	Туре	Pressure	
	Define By	Components	
	Coordinate System	Global Coordinate System	
	X Component	Tabular Data	
	Y Component	Tabular Data 🔹 🕨	
	Z Component	Tabular Data	
	Suppressed	No	

非線性材料模擬分析

Exercise 15 殘留應力分析 (來源:成功大學李輝煌教授)

 如圖為一機械元件,兩圓孔半徑均為15mm,a=170mm,b=110mm, c=120mm,L=100mm,d=110mm,e=50mm,R2=10mm, R4=20MM板為等厚度t=10mm。板面受壓力p=0.1MPa,底部圓孔為固 定拘束。分析單位系統採用:mm、N、MPa。材料為彈塑性材料 (perfectly elastic-plastic material),楊氏係數為200GPa,浦松比為0.3, 降服強度=80MPa,slope=0試求出塑性區域位置及殘留應力有多大。

Exercise 16 非線性材料 (來源:成功大學李輝煌教授)

如圖為一冰箱門封元件,由兩鋼板及一長條形封條組成。封條為超彈性材料, 其材料特性由實驗量測得到(TESTDATA),包含單軸/雙軸拉伸測試及剪力測 試。本習題將學習如何藉由實驗數據輸入得到超彈性材料特性,並模擬封條 受兩鋼板(E=200GPA, N=0.3)擠夾之力學行為。此次將以2D進行模型建構, 並以PLANE STRAIN進行模擬後觀察其最大主應力(變)/最小主應力(變)/剪應 力(變)。

