NYMU

Computer Aided Engineering -Part 1 ANSYS-2 電腦輔助工程分析 -Part 1 ANSYS-2

> 林峻立 特聘教授 Chun-Li Lin, Ph.D. 國立陽明大學 生物醫學工程系 Department of Biomedical Engineering, National Yang-Ming University.

Introduction of ANSYS-3D modeling

Utility Menu

A A1	🔨 ANSYS Multiphysics Utility Menu										
File	<u>S</u> elect	List	<u>P</u> lot	Plot <u>C</u> trls	<u>W</u> orkPlane	Parameters	<u>M</u> acro	Me <u>n</u> uCtrls	Help		
					Display V Show WI WP Settin	Working Plane ? Status ngs	ĝ				
					Offset W	P by Incremer	nts				
					Offset W	Pto	•				
					Align WI	? with	•				
					Change I	Active CS to	E.				
					Change I	Display CS to	•				
					Local Co	ordinate Syste	ms 🕨				

	NSYS M	lultip	h y sics	Utility M	lenu				
File	<u>S</u> elect	<u>L</u> ist	<u>P</u> lot	Plot⊆trls	<u>W</u> orkPlane	Parameters	<u>M</u> acro	MenuCtrls	<u>H</u> elp
	Entities Component Manager Comp/Assembly Parts Everything Everything Below								

NYMU

Introduction of ANSYS

Utility Menu>WorkPlane

Offset by increments

3D – modeling: (Ex 5) Construct 3D solid model

Solid Model

Introduction of ANSYS

BME

NYMU

NYMU

Introduction of ANSYS

Preprocessor>Create>Volumes>Block>By Dimension

Create Block by Dimensions								
[BLOCK] Create Block by Dimensions								
X1,X2 X-coordinates	0 8							
Y1,Y2 Y-coordinates	0 4							
Z1,Z2 Z-coordinates	0							
OK Apply	Cancel Help							
∧ Create Block by Dimensions								
[BLOCK] Create Block by Dimensions								
X1,X2 X-coordinates	0 8							
V1.V2 V-coordinates	3.5 [4							
Z1,Z2 Z-coordinates	1 3							
OK Apply	Cancel Help							
Create Block by Dimensions								
[BLOCK] Create Block by Dimensions								
X1,X2 X-coordinates	2 6							
Y1,Y2 Y-coordinates								
Z1,Z2 Z-coordinates	1 3							
OK Apply	Cancel Help							

NYMU

Introduction of ANSYS

- Utility Menu> WorkPlane>Display WorkPlane
- Utility Menu> WorkPlane>WP Settings
- Utility Menu> WorkPlane Offset WP by Increments

Ollset mr	
X-	+X
¥-	+ Y
Z-	+Z
1	
Snaps	<u></u>
X, Y, Z Offse	ets
X- 0	۶+X
Y- 0	<i>f</i>) + Y
Z- 0	٩+Z
90	
Degrees	•
XY, YZ, ZX)	Angles
Global X=	0
Y=	0
Z=	U
I Dynamic	c Mode
OK	Apply
Reset	Cancel
Help	

10 million (1997)

NYMU

Introduction of ANSYS

Preprocessor>Create>Volumes>Solid Cylinder

NYMU

Introduction of ANSYS

- Preprocessor>Create>Lines>Line Fillet
- Preprocessor>Create>Areas>Arbityary>By Lines

∧ Line Fillet										
[LFILLT] Create Fillet Line										
NL1,NL2 Intersecting lines	2 12									
RAD Fillet radius	1									
PCENT Number to assign -										
- to generated keypoint at fillet center										
OK Apply	Cancel Help									

Introduction of ANSYS

Preprocessor>Operate>Extrude>Areas>Along Lines

NYMU

Introduction of ANSYS

Preprocessor>Operate>Subtract>Volumes

3D-modeling: (Ex 6)

Construct the solid model

NYMU

3D-modeling: (Ex 6)

NYMU

3D-modeling: (Ex 6)

3D-modeling: (Ex 6)

BME

NYMU

Main menu>Preprocessor>Modeling>Operate>Extrude> Along Lines (270 °)

BME NYMU	Introduction of ANSYS
	Pre-processing
	Element type
	Real Constants
	 Parameters definition for element
	Material Props
	Modeling
	Meshing
	Direct generation
	Solid modeling
	Other techniques
	Merge

Introduction of ANSYS

Mesh Approach

- Solid modeling
 - Free mesh
 - Mapping mesh
 - 依受力狀態・邊界條件而定

Free Mesh

Ex:Free mesh for Corner Bracket (Element size=0.5) Free mesh> Global size

Tutorial Handout

Demo input and output data

Solid 185/186/187

BME

NYMU

Mesh example: (Ex 7)

- Main Menu>Preprocessor>Operate>Extrude
- Plane Mesh

BME

NYMU

Smart Size (4)

To generate the mapping and free meshs

Mesh example: (Ex 8)

Mesh example: (Ex 8)

NYMU

Introduction of ANSYS

1.元素的連續性,相鄰元素需使用共同的節點和自由度。

2.元素的選用需一致,例如二維和三維的元素不可參雜使用。

3.三角形和契形元素可被使用於過度區。

4.元素需盡可能保持其原來的形狀,即不能扭曲太嚴重。

5.在施力處的網格分割需良好。

6.在預期應力集中處如孔洞、凹槽等處的分割,元素尺寸需較小且 分佈良好。

7. 網格的分割的密度需盡可能隨應力分佈而調整。

3D solid element example: (Ex 9)(SOLID187)

The bracket shown in figure is subjected to a distributed load of 50 lb/in² the on top surface. It is fixed around the hole surface. The bracket is made of steel, with a modulus elasticity of 29*10⁶ lb/in² and v=0.3 . Plot the deformed shape. Also, plot the Mises von stress distribution the in bracket.

BME

NYMU

Introduction of ANSYS

收斂物理量通常可為應力/位移/能量 誤差最好於5%內

3D Intact Tooth Models

NYMU

Convergence example (Ex 10)

📓 實體元素分析

如圖為一機械元件,兩圓孔半徑均為15mm,a=170mm, b=110mm,c=120mm,R₁=R₂=10mm,R₃=R₄=20mm, L=100mm,d=110mm,e=50mm,板為等厚度t=10mm。板 面受壓力p=0.1MPa,底部圓孔為固定拘束,其材料之楊氏模數 E=210GPa,普松比v=0.3,試求結構之應力場與變形。分析單位 系統採用:mm、N、MPa。

本例可使用SOLID185、SOLID186、SOLID187等實體元素來模擬 ,首先採用SOLID186的高階20節點元素

NYMU

兩圓孔半徑均為15mm, a=170mm, b=110mm, c=120mm, R₁=R₂=10mm, R₃=R₄=20mm, L=100mm, d=110mm, e=50mm, 板為等厚度t=10mm。

Solid186


```
BME
NYMU
```

von Mises 等效應力oeqv(SEQV)(MPa)

位移v(UY)(mm)

感興趣各點之等效應力 (各點數值是否收斂)

Main Menu>General Postproc>Query results>Subgrid Solu>Pick

因無正確解析解,因此需進行重新Mesh

細分網格後之有限元素模型(圓角及厚度層數)

NYMU

細分網格後之等效應力比較

NYMU

經由表比較分析,以位於圓角R1的結構最大von Mises等效應力為例,Case2和Case3的應力值變化為 0.12%,而Case3在圓角R1區之元素大小是Case2的 58%,所以可將Case2答案視為已達收斂,Case2的 有限元素模型計算結果是足夠準確的。

	ANSYS	局部元 (厚	ā素大小(mm) 夏度方向)		節點	局部高應力値 等效應力 <i>σ</i> eqv (MPa)		<mark>値</mark> MPa)	B 點位移
Case	log file	上圓孔 底部	圓角 <i>R</i> 1	圓角 <i>R</i> 2	總數量	上圓孔 底部	圓角 R1	圓角 R ₂	<i>v</i> (mm)
1	ex5-8a.log	5	5	5	3504	78.588	90.1	89.926	-2.053
2	ex5-8b.log	1.67	1.15	1.15	9871	79.646	100.214	99.160	-2.056
3	ex5-8c.log	1.25	0.67	0.68	20749	80.006	100.333	99.279	-2.056

若網格化方式改成自由網格(free mesh),且使用 SOLID187高階10節點三角錐元素,在ANSYS執行後 的有限元素模型如圖,而計算結果如下圖,為:A點(圓角R₁)的最大等效應力σ_{eqv}=101.478MPa,B點的最 大y方向位移v=-2.054mm。

BME NYMU SOLID187 計算結果(a)

SOLID187 計算結果(b)

NSORT,S,EQV,0,0,,0

- PRNSOL,S,PRIN
- 列出以下的主應力(S1、S2、S3)與von Mises應力值 (SEQV):

NODE	S1	S2	S3	SINT	SEQV
3199	-1.0752	-34.184	-113.69	112.62	100.25
3175	-0.40420	-33.317	-112.26	111.85	99.563
3234	-0.59514	-33.677	-112.41	111.81	99.484
3171	-0.60976	-33.630	-112.11	111.50	99.204

■ 以上最大von Mises應力值(SEQV)為100.25MPa,與 Case2圖畫出的最大應力101.478MPa 稍不同且與 Case2較接近。

> 若改為使用SOLID185線性4節點三角錐元素(退化元素)的自由網格,在ANSYS執行後的結果如下圖,為:A 點(圓角R1)的最大等效應力oeqv=87.042MPa,B點 的最大y方向位移v=.1.048mm。與Case2結果比較, SOLID45三角錐元素的應力值誤差為13.14%,而位移 誤差則高達49%。以上誤差來源為:SOLID185線性4 節點三角錐元素,其元素剛性過高。ANSYS手冊不建 議使用者採用SOLID45線性4節點三角錐元素(退化元 素)來做自由網格,因為其誤差過大。

SOLID185 三角錐元素計算結果(a)

BME

NYMU

SOLID185 三角錐元素計算結果(b)

BME

NYMU

